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Study of Extreme Values

Why? model, predict, understand, anticipate, or manage
extreme phenomena such as heavy precipitation, devastating
floods, stock market crashes...

Flood in Netherlands, 1953 (photo from Watersnoodmuseum).
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Extreme Value Theory

Focus: observations outside the mass center of the distribution,
i.e. in the tail of the distribution

Usual assumptions on X a random element
◦ convergence of maxima, i.e.

lim
n→+∞

L
(maxn

i=1 Xi − bn

an

)
= L (Z),

with Xi
i.i.d.∼ X.

◦ convergence of excesses, i.e.

lim
t→+∞

L (X/t | ∥X∥ ≥ t) = L (X∞).
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Peaks-over-Threshold

Focus in my thesis: observations exceeding a high threshold
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Regular Variation of X ∈ X
PoT assumption

X ∈ RV (X) if there exists a regularly varying function with index α > 0
function b (i.e. b(tx)/b(t) −→

t→+∞
xα) and a nonzero Borel measure µ on X\{0},

finite on all Borelian sets bounded away from zero s.t.

lim
t→+∞

b(t)P
(
X/t ∈ A) = µ(A), (M0-convergence)

for all Borelian sets A bounded away from zero and s.t. µ(∂A) = 0.

⇔ there exists a limit random variable X∞ s.t.

lim
t→+∞

L (X/t | ∥X∥ ≥ t) = L (X∞);

⇔ there exist a limit radius R∞ and limit angle Θ∞ s.t.

lim
t→+∞

L (X/∥X∥, ∥X∥/t | ∥X∥ ≥ t) = L (Θ∞, R∞).

X∞ = R∞.Θ∞ and R∞ ⊥⊥ Θ∞
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Regular Variation
my angel angle...

X∞ = R∞.Θ∞ and R∞ ⊥⊥ Θ∞

⇒ Θ∞ rules the extremal dependence structure of X

Full independence Partial dependence Full dependence

Focus in my thesis: How to obtain guarantees for
Extreme Values through Statistical Learning methods?
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Statistical learning for extremes?

◦ classic algorithms and concentration results focus on the
bulk of the distribution (under boundedness or
sub-Gaussianity assumptions)

’normal’ behavior
̸=

extreme behavior

⇒ classic statistical learning methods need to be
adapted to well-perform in extreme regions
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Statistical learning for extremes in the literature
still fresh...

supervised learning in
extreme input regions

Classification
[Jalalzai et al.,2018]
[Clémençon et al.,2023]

Regression

functional data analysis

with a RV assumption
[Kokoszka and Xiong,2018]
[Kokoszka and Kulik,2023]
[Kim and Kokoszka,2024]

of a RV element

miscellanea

Dimension reduction
[Goix et al.,2016]
[Cooley and Thibaud,2019]
[Drees and Sabourin,2021]

Anomaly detection
[Goix et al.,2017]
[Chiapino et al.,2020]

Clustering
[Janßen and Wan,2020]
[Vignotto et al.,2021]

Quantile regression
[Velthoen et al.,2023]
[Gnecco et al.,2023]

Cross Validation
[Aghbalou et al.,2022]

Graphical models
[Engelke and Hitz,2020]

concentration [Boucheron and Thomas,2012][Goix et al.,2015]
[Lhaut and Segers,2021][Lhaut et al.,2022]
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Outline

Extreme Value
Theory

Functional
Analysis

Statistical
Learning

I On Regression in Extreme Regions
Application: Modeling and Reconstruction of Extreme Sea Levels

II Regular Variation in Hilbert Spaces

III Principal Component Analysis of Extremes
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Regression in Extreme Regions
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Goal and Motivation

Goal. for (X, Y ) ∈ Rd × [−M, M ] input/output random
pair, find f s.t. f(X) ≈ Y given that ∥X∥ is large

Risk decomposition:

R(f) = P(∥X∥ ≤ t)E
[
(Y − f(X))2 | ∥X∥ ≤ t

]
+

P(∥X∥ ≥ t)

︸ ︷︷ ︸
≪1, if t≫1

E
[
(Y − f(X))2 | ∥X∥ ≥ t

]

⇒ Extremes are negligible in standard Empirical Risk
Minimization
⇒ focus on the minimization of the Conditional Risk

Rt(f) := E
[
(Y − f(X))2 | ∥X∥ ≥ t

]
.
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Beyond observed data

minimizer of Rt depends on t

⇒ no performance guarantees in more distant regions (for
t′ > t).

⇒ focus on the minimization of the Asymptotic Risk

R∞(f) := lim sup
t→+∞

Rt(f) = lim sup
t→+∞

E[(Y − f(X))2 | ∥X∥ ≥ t].

Regular variation w.r.t. some component to save the day...
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Regular Variation w.r.t. some component
Appropriate regularity/stability condition?

Reminder: X ∈ RV (Rd) if limt→+∞ b(t)P(X/t ∈ ·) = µ.

Regular Variation w.r.t. the covariates.

lim
t→+∞

b(t)P
(
X/t ∈ A, Y ∈ C) = µ(A × C),

for all C ∈ B([−M, M ]) and A ∈ B(Rd) bounded away from zero s.t. µ(∂(A ×
C)) = 0.

◦ adaption of the classic assumption to measure the
extremality according to some component (here the input
variable).
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Important example
Predicting a missing component in a regularly varying vector

Let Z = (Z1, ..., Zd+1) ∈ RV (Rd+1). Under classic extreme-
value assumptions on the density of Z, the pair (X, Y ), defined
as

X = (Z1, ..., Zd) and Y = Zd+1/∥Z∥p,

meets our assumptions.

⇒ our framework is well-suited for predicting Zd+1
based on Z1, ..., Zd given that ∥(Z1, ..., Zd)∥p is large

NB back to original scale through

Y = Zd+1
∥Z∥p

⇐⇒ Zd+1 = Y ∥X∥p

(1 − |Y |p)1/p
.
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Consequences
of regular variation w.r.t.X

◦ Existence of (R∞, Θ∞, Y∞) s.t.

L (t−1X, Y | ∥X∥ ≥ t) −→
t→+∞

L (R∞.Θ∞, Y∞)

with R∞ ⊥⊥ Θ∞, Y∞

⇝ Θ∞ conveys all the information to predict Y∞, i.e.

f∗
∞(X∞) = E[Y∞ | X∞] = E[Y∞ | Θ∞]

Propagation of this property to finite-distance extreme
regions?
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Propagation of the angular property

Notation: θ(x) = x/∥x∥ and Θ = X/∥X∥.

Proposition(angular minimizer at finite-distance).
With existence of densities and regularity conditions:

(i) Convergence of minima: inff Rt(f) −→
t→+∞

inff R∞(f).

(ii) Angular minimizer: inff R∞(f) = R∞(f∗
∞),

with f∗
∞(x) = f∗

∞(θ(x)).

Consequence: infh Rt(h ◦ θ) −→
t→+∞

inff R∞(f).

⇒ suggests replacing the former minimization problem with

min
h

Rt(h ◦ θ).

Benefit: significant dimension reduction.
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ROXANE algorithm
to handle regression in extreme regions

Input sample
{

(X1, Y1), ..., (Xn, Yn)
}

of input/output pairs; a
class of angular regression functions H ; number k ≤ n of
extreme observations.

Truncation keep the k ’largest’ observations{
(X(1), Y(1)), ..., (X(k), Y(k)))

}
.

Extreme ERM solve the minimization problem

min
h∈H

1
k

k∑
i=1

(
Y(i) − h(θ(X(i)))

)2
.

Output angular prediction function f̂ for new examples such
that ∥X∥ ≥ ∥X(k)∥.
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Statistical Guarantees
Empirical Risk Minimization

Ordered sample:
{

(X(1), Y(1)), ..., (X(n), Y(n))
}

such that
∥X(1)∥ ≥ ∥X(2)∥ ≥ ....
⇝ Empirical Asymptotic Risk associated with the k largest obs.

R̂n,k(f ◦ θ) := 1
k

k∑
i=1

(
Y(i) − f(θ(X(i)))

)2
.

⇝ ĥθ,k solution of minh∈H R̂n,k(h ◦ θ) over a class H
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Risk decomposition
what can we expect?

R∞(ĥθ,k ◦ θ) − inf
f

R∞(f) ≤ ( inf
h∈H

Rtn,k
(h ◦ θ) − inf

f
Rtn,k

(f))

︸ ︷︷ ︸
model bias

+ 2 sup
h∈H

|Rtn,k
(h ◦ θ) − R∞(h ◦ θ)|

︸ ︷︷ ︸
extreme bias 1

+ (inf
f

Rtn,k
(f) − inf

f
R∞(f))

︸ ︷︷ ︸
extreme bias 2: −→

n,k→+∞
0

+ 2 sup
h∈H

|R̂n,k(h ◦ θ) − Rtn,k
(h ◦ θ)|

︸ ︷︷ ︸
stochastic error

,

with tn,k the quantile s.t. P(∥X∥ ≥ tn,k) = k/n.
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Uniform Statistical Guarantees
a concentration bound + a negligible bias

Assumption(VC-class): H ⊂ C 0(S,R) with VC-dimension
VH < +∞, uniformly bounded: ∃M < +∞ s.t. ∀h ∈ H ,
∀ω ∈ S, |h(ω)| ≤ M .

Theorem(Statistical Guarantees)
(i) Control of stochastic error: With large probability:

sup
h∈H

∣∣∣R̂n,k(h ◦ θ) − Rtn,k
(h ◦ θ)

∣∣∣ ≤ C/
√

k + O(1/k).

(ii) Control of extreme bias 1: Under a mild additional
assumption, we have:

sup
h∈H

∣∣∣Rtn,k
(h ◦ θ) − R∞(h ◦ θ)

∣∣∣ −→
n→+∞

0.
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Sketch of proof of (i)

◦ Intermediate risk functional:

R̃tn,k
(h ◦ θ) = 1

k

n∑
i=1

(
h(θ(Xi)) − Yi

)2
1{∥Xi∥ ≥ tn,k};

◦ Sub-risk-decomposition:

sup
h

∣∣R̂n,k − Rtn,k

∣∣ ≤ sup
h

∣∣R̂n,k − R̃tn,k

∣∣ + sup
h

∣∣R̃tn,k
− Rtn,k

∣∣;
◦ VC-bound: E

[
suph

∣∣R̃tn,k
− Rtn,k

∣∣] ≤ O
(√

VH
k

)
;

◦ Berstein’s type inequality:

P
(
sup

h

∣∣R̃tn,k
− Rtn,k

∣∣−E
[
sup

h

∣∣R̃tn,k
− Rtn,k

∣∣] ≥ ε
)

≤ O
(

exp(−Ckε2)
)
;

◦ Concentration of the 1st term:

suph

∣∣R̂n,k − R̃tn,k

∣∣ ≤ C
k

∑ (
1{∥Xi∥ ≥ tn,k} −1{∥Xi∥ ≥ ∥X(k)∥}

)
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Experiments on a real dataset
the radius is irrelevant to predict extremes

Comparison of three training models : on all
observations, on extremes & on extreme angles.

Output : Agric Output : Food Output : Soda



23/42

Application:

Modeling and Reconstruction of
Extreme Sea Levels
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Prediction of extreme sea levels
sea levels data (SHOM)

Goal: predict sea levels Y
at some output tide gauges
(•) given extreme sea levels
X = (XB, XN ) measured at
nearby input stations (•).

◦ Output station: Port-Tudy (10/08/1966 - 31/12/2023)
◦ Extreme observations: (XB, XN , Y ) given that

{
XB ≥ tB

or XN ≥ tN

}
with tB, tN large thresholds

comparison of ROXANE to a parametric method
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Multivariate procedures
nonparametric vs parametric

ROXANE procedure:
1. Pareto marginal transformation (to satisfy regular

variation condition);
2. transformation as in the example "Predicting a missing

component in a regularly varying vector" (to fit our
framework);

3. predictions via predictive function estimated by RF or
OLS.

MGP procedure:
1. procedure in [Kiriliouk et al., 2019] to deduce a well-fitted

density;
2. conditional sampling given the values at the input stations;
3. predictions via Monte-Carlo average of the conditionally

generated values.
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Time series prediction
of Extreme Sea Levels for 1999, 1989, and 1979
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A different perspective
from finite to infinite dimension

in the latter study: extremes if a punctual value is large

what could be done: represent data as a vector in R12 or as a
function, with extremes defined by a large L2-norm
⇝ better for precipitation or energy consumption analysis
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Extreme FDA
what exists?

◦ Vast majority of works in functional extremes concerns
random objects in C [0, 1],D[0, 1] or J1;
⇒ extremality measured w.r.t. the supremum norm ∥ · ∥∞

Target. Functional data with high energy, i.e. stochastic
processes in L2[0, 1] with large L2-norm.

◦ Characterization of regular variation in general Polish
spaces [Hult and Lindskog, 2006]

◦ Existing works in Hilbert spaces: [Kokozaska et al.,
2018,2019,2022,2023,2024]

Hilbert regular variation as working assumption but not
as study object.
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Regular Variation in Hilbert Spaces
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What does it mean to be regularly varying
in a Hilbert space?

Focus(more general). Regularly varying stochastic processes
with sample paths in a separable Hilbert space H.

[Kim and Kokozska, 2022] prove that

X ∈ RV (H) ⇒ ∀N ≥ 1, πN (X) ∈ RV (RN ),

where πN (X) :=
(
⟨X, e1⟩, ..., ⟨X, eN ⟩

)
is fidi projection on a

Hilbert base (ei)i≥1

What about the converse? Does finite-dimensional
characterizations of regular variation in H exist?
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fidi characterization of regular variation

regular variation of the fidi projections not enough for
global regular variation, relative compactness is needed

fidi characterizations. Equivalent assertions:
1. X ∈ RV (H) such that µt(·) := b(t)P(X/t ∈ ·) M0−→ µ(·).
2. the family (µt) is relatively compact w.r.t. the

M0-topology and for all N ≥ 1, πN (X) ∈ RV (RN ) such
that b(t)P(πN (X)/t ∈ ·) M0→ µN (·).

In particular, µN = µ ◦ πN .

relative compactness could be tricky to verify...
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fidi polar characterization of regular variation

fidi polar characterizations. Equivalent assertions:
1. X ∈ RV (H) such that ∥X∥ ∈ RV and

L (Θt) := L (Θ|∥X∥ ≥ t) → L (Θ∞).
2. ∥X∥ ∈ RV and for all h ∈ H, ⟨Θt, h⟩ w−→ ⟨Θ∞, h⟩.
3. ∥X∥ ∈ RV and for all N ≥ 1, πN (Θt)

w−→ πN (Θ∞).

Hilbert regular variation translated in terms of
finite-dimensional weak convergences.
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Principal Component Analysis of
Extremes
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Adaptation of [Drees and Sabourin,2021]?

How to perform efficient dimension reduction tailored for
functional extremes?

[Drees and Sabourin,2021]: results (with statistical guarantees)
on the convergence of PCA elements of a regularly varying
vector towards its limit vector in finite-dimension through an
analysis of the reconstruction error

compactness of the unit sphere used;

bounds depend on the dimension;

not suited for infinite dimension!
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Our focus: Covariance Operators

X ∈ RV (H), L (Θt) := L (Θ|∥X∥ ≥ t) → L (Θ∞)

Rank one operator: ∀h1, h2 ∈ H, h1 ⊗ h2(·) = ⟨h1, ·⟩h2.

Covariance operator of Θt: Ct := E[Θ ⊗ Θ | ∥X∥ ≥ t]
with ∥Ct∥2

HS :=
∑+∞

i=1 ∥Ctei∥2 < ∞.

PCA of Θt: with proba. one, Θt =
∑+∞

i=1 ⟨Θt, φi,t⟩φi,t where
φi,t eigenfunction of Ct and E[⟨Θt, φi,t⟩2] = λi,t eigenvalue of Ct.

Convergence of Ct and (φi,t, λi,t) as t → +∞?

Candidates: ◦ C∞ = E[Θ∞ ⊗ Θ∞];
◦ (φi,∞, λi,∞) ordered eigenelements of C∞.
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Deterministic convergences
is the limit of PCA the PCA of the limit?

Convergence of covariance operator.

∥Ct − C∞∥HS → 0, as t → +∞.

positive eigengap: ∃p ≥ 1, λp,∞ > λp+1,∞
⇝ Vp,∞ = span(φ1,∞, ..., φp,∞) unique

Corollary(convergence of eigenspaces).

ρ(Vp,t, Vp,∞) → 0, as t → +∞,

where Vp,t = span(φ1,t, ..., φp,t) and ρ(A, B) = ∥ΠA − ΠB∥op

and ΠA orthogonal projection onto A.
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Sketch of proof
Convergence of covariance operator:

◦ Θt
w→ Θ∞ ⇒ Θt ⊗ Θt

w→ Θ∞ ⊗ Θ∞ (h 7→ h ⊗ h ∈ C (H, HS(H)));

∥Ct − C∞∥HS = ∥E[Θt ⊗ Θt] − E[Θ∞ ⊗ Θ∞]∥HS

= ∥E[Yt] − E[Y∞]∥HS

≤ E∥Yt − Y∞∥HS

−→
t→+∞

0

Skorokhod

Jensen

DCT

◦ Skorokhod’s Th.: ∃Yt, Y∞, Yt
d= Θt ⊗ Θt, Y∞

d= Θ∞ ⊗ Θ∞, Yt
as→ Y∞;

◦ Jensen’s inequality: ∥Ct − C∞∥HS ≤ E∥Yt − Y∞∥HS ;
◦ DCT: Yt

as→ Y∞ + ∥Yt − Y∞∥HS ≤ 2 ⇒ E∥Yt − Y∞∥HS → 0.

Corollary: Th. 3 in [Zwald and Blanchard, 2005] gives

ρ(V p
t , V p

∞) ≤ ∥Ct − C∞∥HS

γp
∞

, with γp
∞ = (λp

∞ − λp+1
∞ )/2.
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Statistical guarantees
a concentration bound

concentration of the "empirical" covariance operator

Ĉk = 1
k

k∑
i=1

Θ(i) ⊗ Θ(i)

around Ctn,k
? and of the "empirical" p-dim. eigenspace V̂ p

k

around V p
tn,k

?

Concentration of the empirical covariance operator.
with probability at least 1 − δ,

∥Ĉk − Ctn,k
∥HS ≤ C/

√
k + O(1/k),

and in particular, with γp
tn,k

= (λp
tn,k

− λp+1
tn,k

)/2,

ρ(V̂ p
k , V p

tn,k
) ≤ C/(γp

tn,k

√
k) + O(1/k).
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∥Ĉk − Ctn,k
∥HS ≤ C/

√
k + O(1/k),

and in particular, with γp
tn,k

= (λp
tn,k

− λp+1
tn,k

)/2,

ρ(V̂ p
k , V p

tn,k
) ≤ C/(γp

tn,k

√
k) + O(1/k).



39/42

Conclusion and Perspectives
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Conclusion

◦ development of a regression framework to handle regression
in regions where the norm of the input is large;

◦ novel multivariate methods to tackle the problem of
extreme sea level prediction;

◦ finite-dimensional characterization of the
infinite-dimensional Hilbert regular variation;

◦ probabilistic and statistical guarantees for PCA of
extremes in a general settings.

Contributions at the intersection of statistical learning
and extreme value theory.
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Perspectives

Regression in Extreme Regions
◦ weakening of the regular variation and density assumptions;
◦ statistical guarantees on the empirical marginal

standardization in the ROXANE algorithm.

Modeling and Reconstruction of Extreme Sea Levels
◦ adjust the model for smallest extreme (by including

meteorological variables?);
◦ analysis of our method to improve the inference of long

return period.

Hilbertian extremes and PCA
◦ application to functional anomaly detection;
◦ generalization of the results to other convenient functional

basis (wavelets?).
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Contributions

◦ S. Clémençon, N.H., A. Sabourin (2024) Regular variation
in Hilbert spaces and principal component analysis for
functional extremes, Stochastic Processes and their
Applications;

◦ N.H., S. Clémençon, A. Sabourin (2023) On Regression in
Extreme Regions, submitted;

◦ N.H., P. Naveau, A. Sabourin (2024) Multi-site modeling
and reconstruction of past extreme sea levels along the
Atlantic French coast, in process.
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VC-dimension
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Statistical Learning
nonasymptotic analysis

Goal: obtain nonasymptotic statistical guarantees on the
deviation of an empirical measure ν̂n from the true measure ν
over a class A
⇝: control the deviation between risk functionals |R̂ − R| over
a class function
assumption on A : Vapnik-Chervonenkis (VC) dimension
VA is finite ("A could be infinite but not too much")
⇒ VC-inequality [Vapnik and Chervonenkis,1971]: with
probability at least 1 − δ

sup
A∈A

|νn(A) − ν(A)| ≤ 2
√

2
n

(
VA log(2n + 1) + log(4/δ)

)
.

not adapted to extremes, i.e. if for all A ∈ A ν(A) ≤ p ≪ 1
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Statistical Learning for Extremes
Concentration inequalities

a better inequality for extremes [Anthony and
Shawe-Taylor,1993]: with probability at least 1 − δ

sup
A∈A

νn(A) − ν(A)√
ν(A)

≤ 2
√

1
n

(
VA log(2n + 1) + log(4/δ)

)
.

⇒ with ν(A) ≤ p for all A ∈ A

sup
A∈A

|νn(A) − ν(A)| ≤ 2
√

p

n

(
VA log(2n + 1) + log(4/δ)

)
,

[Lhaut et al.,2022]: ν(A) ≤ p for all A ∈ A , with probability at
least 1 − δ

sup
A∈A

|νn(A) − ν(A)| ≤
√

2p

n

√
log(2) + VA log(2np + 1)

+
√

2p

n

(√
2 log(1/δ) +

√
2

2
)

+ 2 log(1/δ)
3n

.
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Concentration inequality for extremes
Theorem 3.8 in [McDiarmid,1998]

Lemma(Bernstein’s type inequality) Let X = (X1, ..., Xn) with Xi taking their values in a
set Z and let f be a real-valued function defined on Z n. Let Z = f(X1, ..., Xn). Consider
the positive deviation functions, defined for 1 ≤ i ≤ n and for x1:i := (x1, ..., xi) ∈ Z i

gi(x1:i) = E[Z|X1:i = x1:i] − E[Z|X1:i−1 = x1:i−1].

Denote b the maximum deviation defined by

b := max
1≤i≤n

sup
x1:i∈Z i

gi(x1:i).

Denote v̂ the supremum of the sum of conditional variances defined by

v̂ := sup
(x1,...,xn)∈Z n

n∑
i=1

σ
2
i (f(x1, ..., xn)),

where σ2
i (f(x1, ..., xn)) := VarX′

i
∼Xi

[gi(x1:i−1, X′
i)]. If b and v̂ are both finite, then

P{f(X) − E[f(X)] ≥ t} ≤ exp
(

−t2

2(v̂ + bt/3)

)
,

for u ≥ 0.
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Appendix: Regression in Extreme
Regions
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Concrete examples

Noise model with heavy-tailed random design.

Y = g(X, ε),

where X ∈ RV (Rd) with X ⊥⊥ ε and g bounded and
continuous s.t. there exists gθ satisfying for all z

lim
t→+∞

sup
∥x∥≥t

|g(x, z) − gθ(x/∥x∥, z)| = 0.

Then (X, Y ) are RV w.r.t. the X component.

with ε bounded:
◦ Additive model: Y = f(X) + ε.
◦ Multiplicative model: Y = εf(X).
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Important example (details)
Predicting a missing component in a regularly varying vector

Let Z = (Z1, ..., Zd+1) ∈ RVα(Rd+1) and a Lp-norm ∥ · ∥p. Let
b(t) = P(∥Z∥p ≥ t)−1.
Assume that Z have a continuous density p and that there
exists a positive function q s.t. for all z ̸= 0 s.t.

td+1b(t)p(tz) − q(z) −→
t→+∞

0,

and
sup

ω∈Sd+1

|td+1b(t)p(tω) − q(ω)| −→
t→+∞

0.

Assume finally that minω∈Sd+1 q(ω) > 0.
Then the pair (X, Y ) =

(
(Z1, ..., Zd), Zd+1/∥Z∥

)
satisfies all the

necessary assumptions.
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Appendix: Modeling and
Reconstruction of Extreme Sea

Levels
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Sea levels data (SHOM)

◦ Data: maximum sea levels over each tide
◦ Training set: most recent observations (>01-01-2000);

Test set: oldest observations (<01-01-2000);
scatterplots bonne couleur + legende
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Margins modeling and threshold selection
common to both procedures

◦ margins are modeled by Extended Generalized Pareto
distribution with cdf

Fσ,ξ,κ(x) =
(

1 −
(
1 + ξx

σ

)−1/ξ
)κ

figure density fit sans le threshold, puis avec threshold
⇝ Generalized Pareto behavior in the right-tail

selected threshold lowest point above which the fitted
density is convex, i.e. largest zero of d3Fσ,ξ,κ(x)/dx3.
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Marginal modeling and threshold selection

Input Training dataset {X1, . . . , Xn} with Xi ∈ R for all 1 ≤ i ≤ n.

Marginal Fitting Fit an EGP distribution to the dataset to obtain a triplet of
estimated parameters (σ, ξ, κ) ∈ [0, +∞[×R × [0, +∞[.

Threshold Computation Compute the threshold t according to the EGP
estimated terms

t = σ
ξ

((
4ξ2+3κξ+3κ+3ξ−1−

√
(4ξ2+3κξ+3κ+3ξ−1)2−4(κ2+2ξ2+3κξ)(2ξ2+3ξ+1)

2(κ2+2ξ2+3κξ)

)−ξ

− 1
)

.

Output estimated marginal EGP parameters (σ, ξ, κ) and a threshold t.
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ROXANE algorithm
Input Extreme training dataset Dext = {Z1, ..., Zk} with Zi = (Xi, Yi)T ∈ Rd × R
input/target pair; fitted EGP parameters
(σ, ξ, κ) = ((σX , ξX , κX )T , (σY , ξY , κY )T )T ∈ R3d+3; a multivariate threshold
t = (tX , tY )T ; a Lr-norm ∥ · ∥r for r ∈ [1, +∞[; a class Γ of angular predictive function
γ : Sd−1 → [0, 1].
Marginal Pareto Transformation Apply the Pareto transformation to each margin of the
observations in Dext

Z̃i = (X̃i, Ỹi) = pσ,ξ,κ(Zi) =
1

1 − Fσ,ξ,κ(Zi)
, for all i ∈ {1, ..., k}.

Angular rescaling Form the angular components of the Pareto scale observations,

ΘX,i = X̃i/∥X̃i∥r,

ΘY,i = Ỹi/∥Z̃i∥r.

Empirical quadratic risk minimization based on the extreme transform dataset, solve the
optimization problem

min
h∈H

k∑
i=1

(
ΘY,i − h(ΘX,i)

)2
. (1)

Output Solution ĥ to problem (1) and a predictive function ĝ given by

ĝ : x ∈ Rd 7→ p
−1
σY ,ξY ,κY

(( ĥ(pσX ,ξX ,κX
(x)/∥pσX ,ξX ,κX

(x)∥r)∥pσX ,ξX ,κX
(x)∥r

1 − ĥ(pσX ,ξX ,κX
(x)/∥pσX ,ξX ,κX

(x)∥r)r

)1/r)
,

to be used for predictions of Yn+1 based on new observation Xn+1 such that Xn+1 ⩽̸ tX .
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MGP predictive algorithm
Input Extreme training dataset Dext = {Z1, . . . , Zk} with Zi = (Xi, Yi)T ∈ Rd × R
input/target pair; fitted GP parameters (σ, ξ) = ((σX , ξX )T , (σY , ξY )T )T ∈ R2d+2; a
multivariate threshold t = (tX , tY )T ; H = {H1, ..., HN } set of N classes of density functions.
Marginal Exponential Transformation Apply the exponential transformation to each
margin of the shifted observations in Dext

Z̃i = (X̃i, Ỹi) = eσ,ξ(Zi − t) = − log
((

1 +
ξ(Zi − t)

σ

)−1/ξ)
, for all i ∈ {1, ..., k}.

Density selection Fit each density model Hj , for all 1 ≤ j ≤ N , to the transformed data
{Z̃1, ..., Z̃k} and select the density ĥ ∈ H with the smallest AIC.
Output Near-optimal density function ĥ in H and a procedure to be used for predictions of
Yk+1 based on new observations Xk+1 such that Xk+1 ⩽̸ tX so that

◦ Generate a sample ( ˆ̃Y 1
k+1, ..., ˆ̃Y L

k+1) via rejection sampling from the conditional density

ĥ|X̃k+1
(ỹ) :=

ĥ(X̃k+1, ỹ)∫
R

ĥ(X̃k+1, s)ds
.

◦ Backtransform the sample via

(Ŷ
1

k+1, ..., Ŷ
L

k+1) = (e
−1
σY ,ξY

( ˆ̃Y 1
k+1) + tY , ..., e

−1
σY ,ξY

( ˆ̃Y L
k+1) + tY ).

◦ Obtain a prediction of Yk+1 by the Monte Carlo average Ŷk+1 = (1/L)
∑L

l=1
Ŷ l

k+1.
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QQ-plots

rajouter legendes
QQ-plots of the true
values vs the estimated
ones via the ROXANE
procedure (with OLS and
RF regression algorithms)
and the MGP procedure.
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Appendix: Regular Variation in
Hilbert Spaces
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Regular variation of fidi projections not sufficient
4
a counter-example

Let R ∼ Pareto(α) and L (Θ|R) = 1∑⌊R⌋
l=1 1/l

∑⌊R⌋
i=1

1
i δei .

Consider X = RΘ.
◦ ∀N ≥ 1, πN (X) ∈ RV (H);
◦ ∥X∥ ∈ RV ;
◦ but X /∈ RV (H).
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RV (C [0, 1]) vs RV (L2[0, 1])
equivalence?

Let X stochastic process in C [0, 1].

⇒ since ∥ · ∥2 continuous w.r.t. ∥ · ∥∞ in C [0, 1] ([Dombry

and Ribatet,2015]).

⇍ a counter-example: Z ∼ Pareto(αZ), ρ ∼ Pareto(αρ)
with 0 < αρ < αZ and Z ⊥⊥ ρ. Let

Y (t) =
(
1 − t

3Z2 exp(−2Z)
)

exp(Z)1
{
[0, 3Z2 exp(−2Z)[

}
.

⇝ Y ∈ C [0, 1] ∩ RV (L2[0, 1]) but Y /∈ RV (C [0, 1]) (since
∥Y ∥∞ /∈ RV )
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Appendix: Principal Component
Analysis of Extremes
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Skorokhod’s representation Theorem. Let (Xn)n≥1 and
X∞ r.v. defined on (Ω, F ,P) such that Xn

w−→ X∞ and the
support of X∞ is separable. Then, there exist (Yn)n≥1 and
Y∞ defined on (Ω′, F ′,P′) such that L (Xn) = L (Yn) and
L (X∞) = L (Y∞) and Yn

as−→ Y∞.

Theorem 3 in [Zwald and Blanchard, 2005]. Let A be
a symmetric positive H-HS-operator with simple nonzero
eigenvalues λ1 > λ2 > . . . Let p > 1 be an integer such that
λD > 0, γp = (λp − λp+1)/2. Let B ∈ HS(H) be another
symmetric operator such that ∥B∥HS(H) < γp/2 and (A + B)
is still a positive operator: Let Πp(A) (resp. Πp(A + B))
denote the orthogonal projector onto the subspace spanned
by the first p eigenvectors A (resp. (A + B)). Then these
satisfy:

∥Πp(A) − Πp(A + B)∥ ≤ ∥B∥
γp

.
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Concentration of the empirical covariance operator.
with probability at least 1 − δ,

∥Ĉk − Ctn,k
∥HS(H) ≤ B(n, k, δ),

with B(n, k, δ) := 1+4
√

log(2/δ)+
√

8 log(4/δ)√
k

+ 8 log(2/δ)+4 log(4/δ)
3k ,

and in particular,

ρ(V̂ p
k , V p

tn,k
) ≤ B(n, k, δ)

γp
tn,k

, with γp
tn,k

= (λp
tn,k

− λp+1
tn,k

)/2.


