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Study of Extreme Values

Why? model, predict, understand, anticipate, or manage
extreme phenomena such as heavy precipitation, devastating
floods, stock market crashes...

Flood in Netherlands, 1953 (photo from Watersnoodmuseum).
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Extreme Value Theory

Focus: observations outside the mass center of the distribution,
i.e. in the tail of the distribution

Usual assumptions on X a random element

o convergence of maxima, i.e.

noX;—b
lim g (FEELSLT) (),
n—-+oo an,
. ii.d.
with X; "~ X.

o convergence of excesses, i.e.

Jim 2 (X/t] X)) > 1) = 2(Xe)

3/42



Peaks-over-Threshold
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Focus in my thesis: observations exceeding a high threshold
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Regular Variation of X € X ‘

PoT assumption

s 2
X € RV(X) if there exists a regularly varying function with index o > 0

function b (i.e. b(tx)/b(t) — x%) and a nonzero Borel measure p on X\{0},
t——+oco
finite on all Borelian sets bounded away from zero s.t.

lim b(t)P(X/t e A) = p(A), (My-convergence)

t—-+o0

for all Borelian sets A bounded away from zero and s.t. p(0A) = 0.
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Regular Variation of X € X ‘

PoT assumption

s 2
X € RV(X) if there exists a regularly varying function with index o > 0

function b (i.e. b(tx)/b(t) — x%) and a nonzero Borel measure p on X\{0},
t——+oco

finite on all Borelian sets bounded away from zero s.t.

lim b(t)P(X/t e A) = p(A), (My-convergence)

t—-+o0

for all Borelian sets A bounded away from zero and s.t. p(0A) = 0.
\ J

< there exists a limit random variable X s.t.

Jim (Xt | [X] > 1) = 2 (Xoo);

< there exist a limit radius Roo and limit angle O s.t.

Jim 2O X, X0/ 1K) 2 8) = 2(Ouc, Reo).

[Xoo — RO and Ry 1L @oo]




Regular Variation ‘

my angel angle...

[Xoo = Roo-O00 and R 1L O

= O rules the extremal dependence structure of X

X2
X2
X2

EE @ 75 b 75 wo ©s B0 §s @0 do 75 s 75 wmo us
X1 X X1

Full independence Partial dependence Full dependence
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Regular Variation ‘

my angel angle...

X2

0 . -

[Xoo = Roo-O00 and R 1L O

= O rules the extremal dependence structure of X

X2
X2

R w0 25 5o 75 we @5 mo us 0 G0 25 50 75 o 1s Ba Us a0

X1 X1 X1

Full independence Partial dependence Full dependence

Extreme Values through Statistical Learning methods?

Focus in my thesis: How to obtain guarantees for

6/42



Statistical learning for extremes?

o classic algorithms and concentration results focus on the
bulk of the distribution (under boundedness or
sub-Gaussianity assumptions)

YA ’normal’ behavior

£

extreme behavior
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Statistical learning for extremes?

o classic algorithms and concentration results focus on the
bulk of the distribution (under boundedness or
sub-Gaussianity assumptions)

YA ’normal’ behavior

£

extreme behavior

= classic statistical learning methods need to be
adapted to well-perform in extreme regions
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Statistical learning for extremes in the literature

still fresh...

supervised learning in
extreme input regions

Classification

Regression

functional data analysis

with a RV assumption

of a RV element

miscellanea

Dimension reduction

Anomaly detection

Clustering

Quantile regression

C

ross Validation Graphical models

concentration
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Outline

Functional
Analysis
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Outline

Functional Statistical
Analysis Learning
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Outline

@ On Regressio
Application: Model

S

treme Sea Levels
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Outline

@ On Regression in Extreme Regions

Application: Modeling and Reconstruction of Extreme Sea Levels

@ Regular Varia'

ilbert Spaces
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Outline

@ On Regression in Extreme Regions

Application: Modeling and Reconstruction of Extreme Sea Levels

@ Regular Variation in ert Spaces

@ Principal Component Analysis of Extremes
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Regression in Ex e Regions
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Goal and Motivation v

Goal. for (X,Y) € R? x [~M, M] input/output random
pair, find f s.t. f(X) =Y given that || X|| is large

Risk decomposition:

R(f) =P(IX ]| < OE[(Y — F(X)?| | X] <t]+

P(|1X| > ) E[(Y - F(X)* | [ X] > ]
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Goal and Motivation v

Goal. for (X,Y) € R? x [~M, M] input/output random
pair, find f s.t. f(X)~Y given that || X]|| is large

Risk decomposition:

R(f) = B(| X|| < OE[(Y — F(X))* | |X] < t]+
P(|1X| > ) E[(Y - F(X)* | [ X] > ]
—_———
<1, if £>1
= Extremes are negligible in standard Empirical Risk
Minimization
= focus on the minimization of the Conditional Risk

Ri(f) = B[(Y — f(X))* | |X] > 1].
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Beyond observed data v

N minimizer of R; depends on ¢

= no performance guarantees in more distant regions (for
t'>t).
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Beyond observed data v

N minimizer of R; depends on ¢

= no performance guarantees in more distant regions (for
t'>t).

= focus on the minimization of the Asymptotic Risk

Reo(f) := limsup Ry(f) = limsup E[(Y — f(X))* | [|X]| > ¢].

t—+o00 t—+o00
Ay

"\
L J

Regular variation w.r.t. some component to save the day...

12/42



Regular Variation w.r.t. some component v
Appropriate reqularity/stability condition?

Reminder: X € RV (R?) if limy_, 1 o b(t)P(X/t € -) = pu.

4 )
Regular Variation w.r.t. the covariates.

tl}_irfl bt)P(X/te AY € C) = u(A x C),
for all C' € B([—M, M]) and A € Z(R%) bounded away from zero s.t. pu(9(A x
C)) =0.

\, J

o adaption of the classic assumption to measure the
extremality according to some component (here the input
variable).
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Important example

Predicting a missing component in a regularly varying vector

e

\

Let Z = (Z1,...,Z441) € RV(R¥!). Under classic extreme-
value assumptions on the density of Z, the pair (X,Y), defined

as
X = (Zl,...,Zd) and Y:Zd_,_l/”Z”p,

meets our assumptions.
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Important example v

Predicting a missing component in a regularly varying vector

e “

Let Z = (Z1,...,Z441) € RV(R¥!). Under classic extreme-
value assumptions on the density of Z, the pair (X,Y), defined

as
X = (Zl,...,Zd) and Y:Zd+1/”Z”p,

meets our assumptions.
.

= our framework is well-suited for predicting Z;
based on Zi, ..., Z; given that ||(Z1, ..., Zy)||, is large

NB back to original scale through

Za+1 Y| X]|p
= = Zy=-—r
1Z]]p (1—|Yp)t/p
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Consequences

of regular variation w.r.t.X

o Existence of (Rso, O, Yoo) S.t.

with

LUHIX Y | |X| > t) 0 Z (Roo Occ, Yoo

R 1 Oy, Yao
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Consequences v

of regular variation w.r.t.X

o Existence of (Roo, Ooos Yoo) S.t.

LUHIX Y | |X| > t) 0 Z (Roo Occ, Yoo

Roo 1l O, Yoo

with

~ B4 conveys all the information to predict Yo, i.e.

fa (XOO) = IE[Yoo ‘ XOO] = IE[Yoo ‘ 600]

[e.9]

Propagation of this property to finite-distance extreme
regions?
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Propagation of the angular property v

Notation: 0(z) = z/||z|| and © = X/| X||.

4 '
Proposition (angular minimizer at finite-distance).
With existence of densities and regularity conditions:

(i) Convergence of minima: inf; R(f) sl inf¢ Roo(f).

(i) Angular minimizer: inf; Ro(f) = Roo(f)s
with f3,(z) = f5,(0(z)).

Consequence: infy Ri(h o 0) s inff Roo (f).

= suggests replacing the former minimization problem with
mljn Ri(hod).

Benefit: significant dimension reduction.
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ROXANE algorithm .

to handle regression in extreme regions

Input sample {(Xl, Y1),y (X, Yn)} of input/output pairs; a
class of angular regression functions #; number k < n of
extreme observations.

Truncation keep the k 'largest’ observations
{(X), Y, s (X, Y) }-

Extreme ERM solve the minimization problem

Output angular prediction function f for new examples such
that | X > | Xu
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Statistical Guarantees v

Empirical Risk Minimization

Ordered sample: {(X(l),Y(l)), veny (X(n),Y(n))} such that
Xyl = Xl = ...
~ Empirical Asymptotic Risk associated with the k largest obs.

k 2
> (Yo - FO0Xa))

=1

Rk

w\*—‘

~ ]A”Lgyk solution of minyec Rmk(h o #) over a class
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Risk decomposition v

what can we expect?

Roo(ho 0 0) = 10f Ro(f) < (inf R, (b0 0) = inf Ry, . (f)

+ 2 sup |Ry, ,(ho8) — R(ho0)| + (inf Ry, , (f) —inf Roo(f))
het ’ f ’ f

+ 2 sup |Rox(ho8) — Ry, , (ho)
hes# ’

with ¢, j the quantile s.t. P(||X]|| > t, 1) = k/n.
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Risk decomposition v

what can we expect?

Reo(ho 0 0) — inf Reo(f) < (inf Ry, (hof)— inf R, . (f))

model bias

+ 2 sup |Ry, ,(ho8) — R(ho8)| + (inf Ry, , (f) — inf Roo(f))
het ’ f ’ f

extreme bias 1 extreme bias 2: — 0
n,k—+o0

+ 2 sup |Rui(ho8) — Ry, , (hob)
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Risk decomposition v

what can we expect?

Roo(hasc0) = inf Rec(f) < (0 Ri,, (0o ) ~inf Ry, (1)

model bias

+ 2 sup |Ry, ,(ho8) — R(ho8)| + (inf Ry, , (f) — inf Roo(f))
het ’ f ’ f

extreme bias 1 extreme bias 2: — 0
n,k—+o0

+ 2 sup |R,x(ho8) — Ry, ,(hob),
hes# '

stochastic error
with ¢, the quantile s.t. P(||X]|| > t 1) = k/n.
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Uniform Statistical Guarantees v

a concentration bound + a negligible bias

Assumption(VC-class): # C €°(S,R) with VC-dimension
V¢ < 400, uniformly bounded: M < 400 s.t. Vh € 52,
Vw € S, |h(w)| < M.

p
Theorem(Statistical Guarantees)
(i) Control of stochastic error: With large probability:

sup | Ry (ho6) = Ry, (ho6)| < C/VE+O(1/k).
hest

(ii) Control of extreme bias 1: Under a mild additional
assumption, we have:

:élj}; )Rtn,k(h 00) — Roo(h o 9)‘ e 0.
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Sketch of proof of (7) v

o Intermediate risk functional:
- 12 2
Ry, (ho8) = =3~ (hO(X) = ¥i) 1{IXi] = tus}s
i=1

o Sub-risk-decomposition:

n,k |7

Sl}llp |Rn,k - Rtn7k| < Sl}lp !Rn,k - Rtnyk’ + Slllp |Rtn.;‘, — Ry
1< O(w‘%’“);

] =€) < O(exp(~Cke?));

o VC-bound: E[sup, |1, , — 1%
o Berstein’s type inequality:

n,k

n,k

IED(Sllp ’Rtn,.k - Rtn“k' | _E I:Sup |Rtn B Rt
h ' h "
o Concentration of the 1st term:

sup [ Ry — B, o] < § 5 (U{IXG] 2 toged = LIX0 2 1 X9 11})
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Experiments on a real dataset v

the radius is irrelevant to predict extremes

Comparison of three training models : on all
observations, on extremes & on extreme angles.

s
]
o
]
z I Train on X
H HE Training on X | [|[X|| large
2| = Training on © | |X|| large
oLs RF
o P
5 —— Permutation importance
7003 —— Gini importance
g
c
o
t
o
Q
g 1

extremality extremality extremality

Output : Agric Output : Food Output : Soda
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Application:

Modeling and Reconstruction of
Extreme Sea Levels



Prediction of extreme sea levels

sea levels data (SHOM)

o Yl
- s
oy
£ %
/7 Brest
e OA./U)41846

_ Concarneau
. 28/06/1999
P YA
: SV
™
Port-Tudy <57,
10/08/1966 “Le Crouesty
(,14/03/1936
Saint-Nazaire
25/05/1821

Goal: predict sea levels YV
at some output tide gauges
(e) given extreme sea levels
X = (Xp,Xn) measured at
nearby input stations (e).

2
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Prediction of extreme sea levels ‘

sea levels data (SHOM)

Yo

P LN Goal: predict sea levels Y
o[ ogpiie A at some output tide gauges
’ \i — (e) given extreme sea levels
5‘.‘28'/03':7”9\:? X = (Xp,Xn) measured at

o, X B nearby input stations (e).
(,14/03/1936

3
Saint-Nazaire
25/05/1821

o Output station: Port-Tudy (10/08/1966 - 31/12/2023)
o Extreme observations: (Xp, Xy,Y) given that {XB >1p

or Xy > tN} with tp,ty large thresholds
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Prediction of extreme sea levels

sea levels data (SHOM)

T
oS
/7 Brest
@ oA./owsAe
X

_ Concarneau
& 28/06/1999

e,

h ey

.
Port-Tudy S
10/08/1966 “Le Crouesty

(,14/03/1936

3
Saint-Nazaire
25/05/1821

Goal: predict sea levels YV
at some output tide gauges
(e) given extreme sea levels
X = (Xp,Xn) measured at
nearby input stations (e).

o Output station: Port-Tudy (10/08/1966 - 31/12/2023)
o Extreme observations: (Xp, Xy,Y) given that {XB >1p

or Xy > tN} with tp,ty large thresholds

comparison of ROXANE to a parametric method

9
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Multivariate procedures ‘

nonparametric vs parametric

ROXANE procedure:
1. Pareto marginal transformation (to satisfy regular
variation condition);
2. transformation as in the example "Predicting a missing
component in a regularly varying vector" (to fit our
framework);

3. predictions via predictive function estimated by RF or
OLS.

MGP procedure:
1. procedure in to deduce a well-fitted
density;
2. conditional sampling given the values at the input stations;
3. predictions via Monte-Carlo average of the conditionally
generated values.
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Time series prediction ’

of Extreme Sea Levels for 1999, 1989, and 1979

6.0
5.8
1S
: >6 —— True values
© 54 —— Predictions MGP
E’ 5.2 —— Predictions ROX OLS
© 95% Prediction Interval (MGP)
S 5.0
wn
4.8
4.6
1999
5.8
5.8
€56 S
- — 5.6
wn wn
v 5.4 [5]
E, E’ 5.4
5.2
§ § 5.2
>0 5.0

1989 1979
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A different perspective

from finite to infinite dimension

12:00 08-09 00:00 11-09
in the latter study: extremes if a punctual value is large
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A different perspective

from finite to infinite dimension

Sea Levels (m)
N w s e Y@

1,

12:00 08-09 00:00 11-09

in the latter study: extremes if a punctual value is large

what could be done: represent data as a vector in R'? or as a
function, with extremes defined by a large L?-norm
~ better for precipitation or energy consumption analysis
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Extreme FDA v

what exists?

o Vast majority of works in functional extremes concerns
random objects in [0, 1],D[0, 1] or J;

= extremality measured w.r.t. the supremum norm || - ||eo

Target. Functional data with high energy, i.e. stochastic
processes in L?[0, 1] with large L?>-norm.

o Characterization of regular variation in general Polish
spaces

o Existing works in Hilbert spaces:

/N Hilbert regular variation as working assumption but not
as study object.
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Regular Varia!n in Hilbert Spaces



What does it mean to be regularly varying
in a Hilbert space?

Focus(more general). Regularly varying stochastic processes
with sample paths in a separable Hilbert space H.

prove that
X € RV(H) = VYN > 1,7n(X) € RV(RY),

where mx (X

= ((X,e1), ..., (X,en)) is fidi projection on a
Hilbert base ( i)i>1
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What does it mean to be regularly varying
in a Hilbert space?

Focus(more general). Regularly varying stochastic processes
with sample paths in a separable Hilbert space H.

prove that
X € RV(H) = VYN > 1,7n(X) € RV(RY),

where mx (X

= ((X,e1), ..., (X,en)) is fidi projection on a
Hilbert base ( i)i>1

What about the converse? Does finite-dimensional
characterizations of regular variation in H exist?

30/42



fidi characterization of regular variation v

VAN regular variation of the fidi projections not enough for
global regular variation, is needed
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fidi characterization of regular variation v

VAN regular variation of the fidi projections not enough for
global regular variation, is needed

4 )
fidi characterizations. Equivalent assertions:

1. X € RV(H) such that () == bO)P(X/t € -) 2% u(-).

2. the family () is relatively compact w.r.t. the
Mjy-topology and for all N > 1, nx(X) € RV (RY) such

that b(t)P(rn(X)/t € ) 22 un ().

In particular, uy = pomy.
\

relative compactness could be tricky to verify...
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Judi polar characterization of regular variationey

( fidi polar characterizations. Equivalent assertions:
1. X € RV (H) such that || X|| € RV and
Z(0y) :=Z0O]|X]| >t) = Z(Ou).
2. || X|| € RV and for all h € H, (04, h) — (GO0, h).
3. | X|| € RV and for all N > 1, 75(0;) % TN (Oo)-
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Judi polar characterization of regular variationgy

( fidi polar characterizations. Equivalent assertions:
1. X € RV(H) such that || X|| € RV and
Z(0y) :=Z0O]|X]| >t) = Z(Ou).
2. || X|| € RV and for all h € H, (04, h) — (GO0, h).
3. || X|| € RV and for all N > 1, 7x(0;) — TN (Ooo)-

Hilbert regular variation translated in terms of
finite-dimensional weak convergences.
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Principal Con‘nt Analysis of

Extremes



Adaptation of ? .

How to perform efficient dimension reduction tailored for
functional extremes?

: results (with statistical guarantees)
on the convergence of PCA elements of a regularly varying
vector towards its limit vector in finite-dimension through an
analysis of the reconstruction error
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/N bounds depend on the dimension;
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Adaptation of ? .

How to perform efficient dimension reduction tailored for
functional extremes?

: results (with statistical guarantees)
on the convergence of PCA elements of a regularly varying
vector towards its limit vector in finite-dimension through an
analysis of the reconstruction error

VAN compactness of the unit sphere used;

/N bounds depend on the dimension;

not suited for infinite dimension!

34/42



Our focus: Covariance Operators

X € RV(H), Z2(6;) := Z(6]|X]| > 1) = Z(O)

Vhl,hg S H, h1 ® hg() = <h1, ->h2.

¢, =E[0206||X] >1
with ||yl := 202 [ Creil|* < oc.

with proba. one, ©; = Z;;Of(@t, ©it) i where

@i+ eigenfunction of Cy and E[(Oy, ¢;+)?] = \is eigenvalue of C;.

Convergence of C; and (¢;¢, \i¢) as t — +00?

Co = E[O ® O);

(i,005 Mioo) Ordered eigenelements of C.
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Deterministic convergences
is the limit of PCA the PCA of the limit?

Convergence of covariance operator.

IC; — Collzs — 0, ast— +oo.

Ip>1, 00 > Apt1,00
e ‘/p,oo = Span(@l,oo, ceey SDp7()o) unlque

4 N\
Corollary(convergence of eigenspaces).

P(Vpits Vpoo) = 0, ast— +oo,

where V,; = span(¢i4, ..., p¢) and p(A, B) = ||lIa — Ip|lep
and IT4 orthogonal projection onto A.
.
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Sketch of proof

Y
Convergence of covariance operator:
00 50 =0 ®O; 5 O ®Ou (h—h®h e % (H,HS(H)));
[Ct = Cslls = ||E[Or @ O] — E[O00 ® Oco]|ms

D Skorokhod
= |[E[Y:] — E[Y]llas

) Jensen
<E|Y: — Ysl|lus

o ) DCT

t—+oo

Skorokhod’s Th.: 3V;, Yoo, Vi = ©: ® O, Yoo = Ooc @ Oue, Vi X3 Vo
Jensen’s inequality: ||C; — Cuo|lus < E||Y: — Yoollus;
DCT: YV; 3 Yo + ||V — Yao|lus <2 = E|)Y; — Yoo|lws — O.
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Sketch of proof

Y
Convergence of covariance operator:
00 50 =0 ®O; 5 O ®Ou (h—h®h e % (H,HS(H)));
[Ct = Cslls = ||E[Or @ O] — E[O00 ® Oco]|ms

D Skorokhod
= |[E[Y:] — E[Y]llas

) Jensen
<E|Y: — Ysl|lus

o ) DCT

t—+oo

Skorokhod’s Th.: 3V;, Yoo, Vi = ©: ® O, Yoo = Ooc @ Oue, Vi X3 Vo
Jensen’s inequality: ||C; — Cuo|lus < E||Y: — Yoollus;
DCT: YV; 3 Yo + ||V — Yao|lus <2 = E|)Y; — Yoo|lws — O.

Corollary: Th. 3 in gives
< 1€t = Collus

7o

p(VP,VE) , with 7%, = (A%, — ABF) /2.
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Statistical guarantees

a concentration bound

concentration of the "empirical" covariance operator
L1
Ce =120 ®6
i=1

around Cy, 7 and of the "empirical" p-dim. eigenspace VP
around V;’ 7
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Statistical guarantees

a concentration bound
concentration of the "empirical" covariance operator
L1
Ce =120 ®6
i=1

around C;, 7 and of the "empirical" p-dim. eigenspace V)’
around V;’ 7

4 )
Concentration of the empirical covariance operator.

with probability at least 1 — ¢,
ICk = Ct, llms < C/VE+ O(1/k),

and in particular, with 77 = (X}  — )\f:: )/2,

p(VEVE ) < C/(3F, ,VE) + O(1L/k).

38/42



Conclusion
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Conclusion

o development of a regression framework to handle regression
in regions where the norm of the input is large;

o novel multivariate methods to tackle the problem of
extreme sea level prediction;

o finite-dimensional characterization of the
infinite-dimensional Hilbert regular variation;

o probabilistic and statistical guarantees for PCA of
extremes in a general settings.

Contributions at the intersection of statistical learning
and extreme value theory.
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Perspectives

Regression in Extreme Regions
o weakening of the regular variation and density assumptions;

o statistical guarantees on the empirical marginal
standardization in the ROXANE algorithm.

Modeling and Reconstruction of Extreme Sea Levels

o adjust the model for smallest extreme (by including
meteorological variables?);

o analysis of our method to improve the inference of long
return period.

Hilbertian extremes and PCA
o application to functional anomaly detection;

o generalization of the results to other convenient functional
basis (wavelets?).
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Contributions

o S. Clémencgon, N.H., A. Sabourin (2024) Regular variation
in Hilbert spaces and principal component analysis for
functional extremes, Stochastic Processes and their
Applications;

o N.H., S. Clémencon, A. Sabourin (2023) On Regression in
Eztreme Regions, submitted;

o N.H., P. Naveau, A. Sabourin (2024) Multi-site modeling
and reconstruction of past extreme sea levels along the
Atlantic French coast, in process.
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Statistical Learning O

nonasymptotic analysis

Goal: obtain nonasymptotic statistical guarantees on the
deviation of an empirical measure 2, from the true measure v
over a class &7

~: control the deviation between risk functionals |R — R| over
a class function

assumption on /: Vapnik-Chervonenkis (VC) dimension
Ve is finite ("7 could be infinite but not too much")

= VC-inequality [Vapnik and Chervonenkis, 1971]: with
probability at least 1 — §

sup i (4) — v(A)] < 22 (Vi Tog(2n+ 1) + log(4/5)).
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Statistical Learning O

nonasymptotic analysis

Goal: obtain nonasymptotic statistical guarantees on the
deviation of an empirical measure 2, from the true measure v
over a class &7

~: control the deviation between risk functionals |R — R| over
a class function

assumption on /: Vapnik-Chervonenkis (VC) dimension
Ve is finite ("7 could be infinite but not too much")

= VC-inequality [Vapnik and Chervonenkis, 1971]: with
probability at least 1 — §

sup i (4) — v(A)] < 22 (Vi Tog(2n+ 1) + log(4/5)).

N not adapted to extremes, i.e. if forall A€ & v(A) <p<1
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Concentration inequalities

Statistical Learning for Extremes .

a better inequality for extremes [Anthony and
Shawe-Taylor,1993]: with probability at least 1 — ¢
vn(A) —v(A) \/ 1
sup —————- < 24/ —(Vylog(2n + 1) + log(4/6) ).
et v(A) T n< v log(2n 1) + log(4/ ))

= with v(A) <pforall A e &

sup [, (4) = v(A)] < 2/2 (Vi log(2n + 1) + 1og(a/9)).
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Concentration inequalities

Statistical Learning for Extremes O

a better inequality for extremes [Anthony and
Shawe-Taylor,1993]: with probability at least 1 — ¢
vn(A) —v(A) \/1
sup —————- < 24/ —(Vylog(2n + 1) + log(4/6) ).
sup S < 2 (Vi log(20 + 1) + log(4/5))

= with v(A) < pforall A€ &

jleli){ lun(A) —v(A)] < 2\/2 (Vp{ log(2n+1) 4+ 10g(4/5)),

Lhaut et al..2022]: v(A) < p for all A € &7, with probability at
least 1 — 9

2
sup v (A) — v(A)] < 1/ 2 /log(2) + Vi log(2np + 1)
Acd/ n

+ \/?(,/mg(w) + f) + 210%)511/5).
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Concentration inequality for extremes
Theorem 3.8 in [McDiarmid,1998]

the positive deviation functions, defined for 1 < i < n and for z1.; := (z1,...,%;) € 't
9i(®1:4) = E[Z]X1:5 = 21:5] — E[Z|X1:5-1 = z1:5-1]-
Denote b the maximum deviation defined by

b:= max sup  gi(z1.5)-
1<i<ng, cai

Denote © the supremum of the sum of conditional variances defined by

n
- 2
o= s N SR
(x1,...,xn)EXT
i=1
where o'?(f(wl, c @) = Vary, v [gi(z1:4-1, X:)] If b and © are both finite, then
i i

_ 42
P{f(X) — E[f(X)] > t} < exp (z(er—tbt/?)))

for u > 0.

Lemma(Bernstein’s type inequality) Let X = (X1, ..., X,) with X, taking their values in a
set 2 and let f be a real-valued function defined on Z". Let Z = f(X1, ..., Xy ). Consider
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Appendix: Regres in Extreme

Regions



Concrete examples v

p
Noise model with heavy-tailed random design.
Y = g(X7 5))

where X € RV(RY) with X 1L ¢ and g bounded and
continuous s.t. there exists gg satisfying for all z

lim sup |g(x,2) — ga(x/||z|, 2)| = 0.
2400 g >¢

Then (X,Y) are RV w.r.t. the X component.

\, J
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Concrete examples v

p
Noise model with heavy-tailed random design.
Y = g(X7 5))

where X € RV(RY) with X 1L ¢ and g bounded and
continuous s.t. there exists gg satisfying for all z

lim sup |g(x,2) — ga(x/||z|, 2)| = 0.
2400 g >¢

Then (X,Y) are RV w.r.t. the X component.
\, J
with ¢ bounded:
o Additive model: Y = f(X) +e.
o Multiplicative model: Y = e f(X).
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Important example (details)

Predicting a missing component in a regularly varying vector

Let Z = (Z1,..., Z411) € RV,(R4*1) and a LP-norm || - ||,. Let
b(t) = (|2, > t)".

Assume that Z have a continuous density p and that there
exists a positive function ¢ s.t. for all z # 0 s.t.

" b(t)p(tz) — q(z) — 0,

t——+o0

and

d+1
sup [t“TH0(t)p(tw) — g(w)] —> 0.
ESd+1| ()( ) ()|t

Assume finally that min,cs,,, ¢(w) > 0.

Then the pair (X,Y) = ((Zl, v Z4q), Zd+1/HZH) satisfies all the
necessary assumptions.



Appendix: Mo#deling and

Reconstruction of Extreme Sea
Levels



Sea levels data (SHOM)

o Data: maximum sea levels over each tide

o Training set: most recent observations (>01-01-2000);
Test set: oldest observations (<01-01-2000);

scatterplots bonne couleur + legende
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Margins modeling and threshold selection ‘

common to both procedures

o margins are modeled by Extended Generalized Pareto
distribution with cdf

Fren(r) = (1 - (1+ &:)_l/gf

g

figure density fit sans le threshold, puis avec threshold
~ Generalized Pareto behavior in the right-tail
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Margins modeling and threshold selection ‘

common to both procedures

o margins are modeled by Extended Generalized Pareto
distribution with cdf

Fren(r) = (1 - (1+ &:)_l/gf

g

figure density fit sans le threshold, puis avec threshold
~ Generalized Pareto behavior in the right-tail

(S

* selected threshold lowest point above which the fitted
density is convex, i.e. largest zero of d>Fy ¢ . (z)/da?.
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Marginal modeling and threshold selection

Input Training dataset {X1, ..., Xp} with X; e Rforall 1 <i < n.

Marginal Fitting Fit an EGP distribution to the dataset to obtain a triplet of
estimated parameters (o,&, k) € [0, +00[xR X [0, 4o0].

Threshold Computation Compute the threshold ¢ according to the EGP
estimated terms

¢ o (A2 43rE43r+36-1-1/(A€2+3rE+3r+3E—1)2—4(?+267+3rE) (267 +3E+1) ¢ 1
— € 2(k2+26243KE) :

Output estimated marginal EGP parameters (o,&, k) and a threshold ¢.
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ROXANE algorithm

Input Extreme training dataset Peyt = {Z1, ..., Zy } with Z; = (X, Yi)T e R% x R
input/target pair; fitted EGP parameters

(0,6,8) = ((ox,€x,0x)T, (oy, &y, ky)T)T € R34+3; a multivariate threshold
t=(tx,ty)T;a L -norm || - ||, for r € [1,+o0[; a class T of angular predictive function

v 8471 5[0, 1].

Marginal Pareto Transformation Apply the Pareto transformation to each margin of the
observations in Pegt

~ -~ 1
Z; = (X4,Y}) = po,g,w(Zi) = ———————, forallie {1,... k}.
1 - Foen(Zs)
Angular rescaling Form the angular components of the Pareto scale observations,

Ox,i=Xi/lIXillr

Oy, = Yi/I1Z;]lr

Empirical quadratic risk minimization based on the extreme transform dataset, solve the
optimization problem
k

hnéi;fz (eY'i - h(ex,i))2. W

=1

Output Solution h to problem (1) and a predictive function g given by

g:mERde

1 ((fl(paxyﬁx,nx (fB)/HPo—Xvﬁx,nx (w)Hr)”Pch,&X,nX (‘”)Hr)l/r>
oy Ey my 1= h(Poy &5 mx @)/ IPoy & myx @r)" )

to be used for predictions of Y, 11 based on new observation X, 41 such that X, 41 ;{ tx. 62/42



MGP predictive algorithm

Input Extreme training dataset Zeyt = {Z1, ..., Z} with Z; = (X, Yi)T eR? x R
input/target pair; fitted GP parameters (o, €) = ((ox,€x)T, (oy,&y)T)T € R24+2; 5
multivariate threshold t = (tx,ty)T; # = {JA, ..., &N} set of N classes of density functions.

Marginal Exponential Transformation Apply the exponential transformation to each
margin of the shifted observations in Pegt

_ S £§(Z; —t)\-1/¢ )

Zi= (X Vi) = eog(Zi — 1) = —log (14 Z—2) 7 '%), forallie {1k}
o

Density selection Fit each density model 7}, for all 1 < j < N, to the transformed data

{Z1,..., Z}} and select the density h € 5 with the smallest AIC.

Output Near-optimal density function hin A and a procedure to be used for predictions of
Y41 based on new observations Xy such that X ;{ tx so that

o Generate a sample ( k+1’ N likaJrl) via rejection sampling from the conditional density
o (5) = h(Xjq1,9)
[Xjpq W57

fm fb()_(k_H ,s)ds
o Backtransform the sample via

o1 oL -1
Vegrs 0 Yed) = (e, oo

o

Vipn) +ty s 67)1/=§Y (Vi) + ty)-

o Obtain a prediction of Yy by the Monte Carlo average Yk+1 = (1/L) Z k+1
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Appendix: !gular Variation in

Hilbert Spaces



Regular variation of fidi projections not sufficigr*
4

a counter-example

Let R ~ Pareto(a) and Z(O|R) = zwl’/f 7 Z}f{ 15e,.
Consider X = RO.

o VN > 1,7n(X) € RV(H);

o [|X] € RV;

o but X ¢ RV (H).
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RV (£0,1]) vs RV(L?0,1]) v

equivalence?
Let X stochastic process in €0, 1].

since || - ||2 continuous w.r.t. || - ||oc in €0, 1] ([Dombry

and Ribatet,2015]).

a counter-example: Z ~ Pareto(ay), p ~ Pareto(o,)

with 0 < o), < az and Z 1L p. Let

t

Y(t) = (1 - m) exp(2)1{[0, 322 exp(—22)][}.
~Y € €[0,1] N RV (L?[0,1]) but Y ¢ RV(%]0,1]) (since

1Y lloo ¢ BV')
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Appendix: Pr‘al Component

Analysis of Extremes



Ve
Skorokhod’s representation Theorem. Let (X,),>1 and />

X r.v. defined on (Q,.%,P) such that X,, — X, and the
support of X is separable. Then, there exist (Y;,),>1 and
Yo defined on (€, %', P') such that £ (X,) = Z(Y,) and
ZL(Xoo) = ZL(Yso) and Yy, 25 Y.

Theorem 3 in . Let A be
a symmetric positive H-HS-operator with simple nonzero
eigenvalues A\; > Ao > ... Let p > 1 be an integer such that
Ap > 0,9% = (A, — Apy1)/2. Let B € HS(H) be another
symmetric operator such that || B||ggm) < 7*/2 and (A + B)
is still a positive operator: Let IIP(A) (resp. IIP(A + B))
denote the orthogonal projector onto the subspace spanned
by the first p eigenvectors A (resp. (A + B)). Then these
satisfy:

I (4) - (4 + B < 1)

AP
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p
Concentration of the empirical covariance operator.
with probability at least 1 — 9,

Hék - Ctn,kHHS(H) < B(nv k, 5)7

with B(n, k, 6) := 4V log@/%\/8 log(@/3)  8log(2/6)+41og(4/3)

and in particular,

R B(n, k,6) !
PV VP, ) < ===, with~f = (¥  — Nt/

Vi

\
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