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Study of Extreme Values

Why? model, predict, understand, anticipate, or manage extreme
phenomena such as heavy precipitation, devastating floods, stock
market crashes...

Flood in Netherlands, 1953 (photo from Watersnoodmuseum).
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Extreme Value Theory

Focus: observations outside the mass center of the distribution,
i.e. in the tail of the distribution

Usual assumptions on X a random element

o convergence in distribution of maxima, i.e.

lim g(maxizl Xi — by

n—-o00

) = 2(2),

dn
with X; "k x.

o convergence in distribution of excesses, i.e.

Jim 2(X/t [ X > 1) = 2(X)
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Focus in my work : observations exceeding a high threshold




Regular Variation of X € RY

PoT assumption

e 1
X € R\/(}id) if there exist a regularly varying function b with index o > 0
(i.e. b(tx)/b(t) — x%) and a nonzero Borel measure u on RY\{0}, finite on
t—+oo

all Borelian sets bounded away from zero s.t.

lim b(t)P(X/t € A) = u(A), (vague convergence)

t—+oo

for all Borelian sets A bounded away from zero and s.t. pu(9A) = 0.
\ J

<= there exists a limit random variable X s.t.
lim Z(X/t|||X]| >t)=2L(Xx):
t—-+o00
< there exist a limit radius R and limit angle O s.t.

im ZOIXIL X0/t IX] > 1) = 2(@nc, Rec):

[xoo — R..0., and Ry, 1L eoo]




Question

Focus in my thesis: How to obtain guarantees for Extreme
Values through Statistical Learning methods?




Statistical learning for extremes?

o classic algorithms and concentration results focus on the bulk of
the distribution (under boundedness or sub-Gaussianity
assumptions)

AN 'normal’ behavior

o

extreme behavior
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Statistical learning for extremes?

o classic algorithms and concentration results focus on the bulk of
the distribution (under boundedness or sub-Gaussianity
assumptions)

AN 'normal’ behavior

o

extreme behavior

= classic statistical learning methods need adaptation to
perform well in extreme regions
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Statistical learning for extremes in the literature

still fresh...

supervised learning

Classification

Regression

functional data analysis

functional PCA

miscellanea

Dimension reduction

Anomaly detection

Clustering

Quantile regression

Cross validation

Graphical models

concentration




Regression for extremes

joint work with Stephan Clémencon and Anne Sabourin



Goal and Motivation

Goal. for (X, Y) € R? x [-M, M] input/output random pair,
find f s.t. f(X) = Y given that || X|| is large

|

Risk decomposition:

R(F) = P(IX| < E[(Y = F(X))? | |X]| < t]+

P(IX]| > ) E[(Y — F(X))* | I1X]| > ¢]
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Goal and Motivation

Goal. for (X, Y) € R? x [-M, M] input/output random pair,
find f s.t. f(X) = Y given that || X|| is large

Risk decomposition:

R(F) = P(IX| < E[(Y = F(X))? | |X]| < t]+
P(|IX|| > ) E[(Y — F(X))? | [IX]| > ¢]
N—————’
<1, if 1

= Extremes are negligible in standard Empirical Risk Minimization
= focus on the minimization of the Conditional Risk

R(F) ==E[(Y = F(X)? | | X > t].



Beyond observed data

N minimizer of R; depends on t

= no performance guarantees in more distant regions (for t’ > t).
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Beyond observed data

N minimizer of R; depends on t
= no performance guarantees in more distant regions (for t’ > t).

= focus on the minimization of the Asymptotic Risk

Roo(f) := limsup Re(f) = m supE[(Y — F(X))? | [IX]| > t].

t—4-00 +oo
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* Regular variation w.r.t. some component



Regular Variation w.r.t. some component
Appropriate regularity/stability condition?

Reminder: X € RV(RY) if lim;_, o b(t)P(X/t € ) = p.

p
Regular Variation w.r.t. the covariates.

lim b(t)P(X/teAY € C)=u(Ax (),

t—+-00

for all C € B([-M, M]) and A € B(R9) bounded away from zero s.t. u(9(A x
C))=0.
\

J

o adaption of the classic assumption to measure the extremality
according to some component (here the input variable).
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Important example

Predicting a missing component in a regularly varying vector

r 2

Let Z = (Z,...,Z4+1) € RV(RI*L). Under classic extreme-
value assumptions on the density of Z, the pair (X, Y), defined
as

X = (Zla"'azd) and Y:Zd+1/HZHF77

meets our assumptions.
. J
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Important example

Predicting a missing component in a regularly varying vector

r a
Let Z = (Z,...,Z4+1) € RV(RI*L). Under classic extreme-
value assumptions on the density of Z, the pair (X, Y), defined
as

X = (Zla"'vzd) and Y:ZdJrl/HZHPa

meets our assumptions.
. J

= our framework is well-suited for predicting Z,,; based on
Z1, ..., Z4 given that ||(Z1,..., Zg)||p is large

NB back to original scale through

Zy41 Y1 X[
y=244 o Zz, ="
(P41 (1—1|Y[r)t/rP
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Consequences

of regular variation w.r.t. X

o Existence of (Rxo, ©0, Yoo) S:t.

with

LI Y | |1X]] > 1) T Z(Roo B0, Vo)

o - Cleg,y Vs
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Consequences

of regular variation w.r.t. X

o Existence of (Rxo, ©0, Yoo) S:t.

LI Y | |X]| > t) e L (Roo-Occ, Vi)

o - Cleg,y Vs

with

~ Oy conveys all the information in Xoo = Rso.Ooo to predict
Yoo, I.€.

f;(Xoo) = IE[Yoo | Xoo] = IE[Yoo ‘ eoo]

Propagation of this property to finite-distance extreme
regions?
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Propagation of the angular property

Notation: 6(x) = x/||x| and © = X/||X||.

-
Proposition(angular minimizer at finite-distance).

With existence of densities and regularity conditions:

Convergence of minima: infs R;(f) o infr Roo(f)-

Angular minimizer:  infr Ryo(f) = Roo(f%),
with £ (x) = 72 (0(x)).
.

Consequence: infy Ri(h o 6) o infr Roo(f).

= suggests replacing the former minimization problem with
mfjn R:(ho6).

Benefits: extrapolation property 4+ dimension reduction



ROXANE algorithm

to handle regression in extreme regions

Input sample {(Xl, Y1), ey (Xas Yn)} of input/output pairs; a
class of angular regression functions J#; number k < n of extreme
observations.

Truncation keep the k 'largest’ observations
{(X(l)a \/(1))’ ey (X(k)a )/(k)))}

Extreme ERM solve the minimization problem

k 2
min %Z (Y(i) - h(@(X(,)))) .

he#’ i=1

Output angular prediction function h o # for new examples such
that [ X]| > X0
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Statistical Guarantees

Empirical Risk Minimization

Ordered sample: {(X(l), Y))s s (Xinys Y(,,))} such that
Xyl = X2yl = -
~ Empirical Conditional Risk associated with the k largest obs.

Rus(ho0): kz( 06) 1l = X0 1)
k
1;(‘/()—” X(i))))z-

~+ hg k solution of minpec Ry k(h o 6) over a class 7

NB || X4l is the empirical version of the quantile t, x s.t.

P XI[ = tnx) = k/n.
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Risk decomposition

what can we expect?

Roo(ho s 0 0) = inf Roo(F) < (inf Ry, (ho0) —infRy,,(f))
+ 2 sup |Ry, , (ho8) — Ruo(ho0)] + (inf Ry, (f) — inf Reo(f))
herwt £ f

+ 2 sup |fA?,,,k(h09) —R:, (ho8)]
hes# ’
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Risk decomposition

what can we expect?

Roo (o 0 0) = inf Roo(F) < (inf Ry, (ho0) —infRy,,(f))

model bias

+ 2 sup Ry, (ho8) — Ru(ho8)] + (inf R, ,(f) — inf Roo(F))
het ’ f ’ f

extreme bias 2: — 0

extreme bias 1 k0o

+ 2 sup |fA?,,,k(h00) —R:, (ho8)]
hes# ’

stochastic error
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Uniform Statistical Guarantees

a concentration bound + a negligible bias

Assumption(VC-class): 27 C €°(S,R) with VC-dimension
V» < 400, uniformly bounded

-
Theorem(Statistical Guarantees).
Control of stochastic error: With large probability:

sup |Ryk(ho0) — Ry, (hod)| < C/Vk+ O(1/k).

hes#

Control of extreme bias 1: Under a mild additional assumption,
we have:

sup |Ry,,(ho6) = Ruo(hof)| — 0.
he# ’ n,k——+oo
L J

Tools: VC-bound + Bernstein's type inequality.
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An application to the prediction of extreme
sea levels

joint work with Philippe Naveau and Anne Sabourin



Prediction of extreme sea levels
sea levels data (SHOM)

Y. e Goal: predict sea levels Y at
°f’./5€’rf”.j‘(“6 ' " some output tide gauges (e)
R given extreme sea levels X =
.r‘}*zg-"’?f‘g”\“,‘?} (Xg, Xn) measured at nearby
i G input stations (e).
(,14/03/1936

»
saint-Nazaire
25/05/1821

Output station: Port-Tudy (10/08/1966 - 31/12/2023)
Extreme observations: (Xg, Xy, Y) given that {XB > tg or

Xy > tN} with tg, ty large thresholds

comparison of ROXANE to a parametric method
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Marginal modeling

common to both procedures

Margins are modeled by an Extended Generalized Pareto
distribution with cdf

Freat) = (1 (14 )Y

g

o Generalized Pareto behavior in the right-tail;

o kK parameter controls the lower-tail behavior.

i '
025 042 075 1.00 0 0.36 0.50 75 100 5 040 075 1.00
Brest skew surge exceedances (m) Saint-Nazaire skew surge exceedances (m) Port-Tudy skew surge exceedances (m)
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Threshold Selection

EGPD behaves as GPD in the right-tail

-+ GP density strictly convex for £ > —1/2

~~ selected threshold t lowest points above which the fitted
densities are convex, i.e. largest zeros of d3F, ¢ .(x)/dx3.

Density

075

' i
0 3 025 040 0
Saint-Nazaire skew surge exceedances (m) Port-Tudy skew surge exceedances (m)

2 075
Brest skew surge exceedances (m)
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Visual validity

EGPD vs GPD

o Fit of a GP distribution above the selected threshold
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z 2
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Brest sea level exceedances (m) Saint-Nazaire sea level exceedances (m) Port Tudy sea level exceedances (m)

—— GP density ——— EGP density
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Multivariate procedures

nonparametric vs parametric

ROXANE procedure:
1. Pareto marginal transformation (to satisfy regular variation
condition);
2. "angular" transformation as in the "Important example" (to fit
our framework);
3. predictions via predictive function estimated by OLS or RF.

Multivariate Generalized Pareto (MGP) modeling:
1. procedure in to deduce a well-fitted
density;
2. conditional sampling given the values at the input stations;
3. predictions via Monte-Carlo average of the conditionally
generated values.
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QQ-plots of the true values vs the estimated ones
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Time series prediction
of extreme skew surges for 1978, 1979, and 1989

— MGP

bootstrap c.i.
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Model Errors

Mean Absolute Error/Root Mean Square Error

<
=
Extreme sample More extreme sample . MGP
B ROX OLS
B ROX RF
=
o

Extreme sample More extreme sample
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Perspectives

Regression for extremes
o relaxation of assumptions (in particular the regular variation);

o statistical guarantees for the empirical marginal
standardization in the ROXANE algorithm.

Modeling and Reconstruction of Extreme Sea Levels
o adjust the model by including meteorological variables;

o analysis of our method for improving inference on long return
periods.
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Thank you for your attention!



