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Study of Extreme Values
Why? model, predict, understand, anticipate, or manage extreme
phenomena such as heavy precipitation, devastating floods, stock
market crashes...

Flood in Netherlands, 1953 (photo from Watersnoodmuseum).
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Extreme Value Theory

Focus: observations outside the mass center of the distribution,
i.e. in the tail of the distribution

Usual assumptions on X a random element
◦ convergence in distribution of maxima, i.e.

lim
n→+∞

L
(maxn

i=1 Xi − bn
an

)
= L (Z ),

with Xi
i .i .d .∼ X .

◦ convergence in distribution of excesses, i.e.

lim
t→+∞

L (X/t | ∥X∥ ≥ t) = L (X∞).
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Peaks-over-Threshold

Focus in my work : observations exceeding a high threshold
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Regular Variation of X ∈ Rd

PoT assumption

X ∈ RV (Rd) if there exist a regularly varying function b with index α > 0
(i.e. b(tx)/b(t) −→

t→+∞
xα) and a nonzero Borel measure µ on Rd \{0}, finite on

all Borelian sets bounded away from zero s.t.

lim
t→+∞

b(t)P
(
X/t ∈ A) = µ(A), (vague convergence)

for all Borelian sets A bounded away from zero and s.t. µ(∂A) = 0.

⇔ there exists a limit random variable X∞ s.t.

lim
t→+∞

L (X/t | ∥X∥ ≥ t) = L (X∞);

⇔ there exist a limit radius R∞ and limit angle Θ∞ s.t.

lim
t→+∞

L (X/∥X∥, ∥X∥/t | ∥X∥ ≥ t) = L (Θ∞, R∞).

X∞ = R∞.Θ∞ and R∞ ⊥⊥ Θ∞
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Question

Focus in my thesis: How to obtain guarantees for Extreme
Values through Statistical Learning methods?
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Statistical learning for extremes?
◦ classic algorithms and concentration results focus on the bulk of
the distribution (under boundedness or sub-Gaussianity
assumptions)

’normal’ behavior
̸=

extreme behavior

⇒ classic statistical learning methods need adaptation to
perform well in extreme regions
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Statistical learning for extremes in the literature
still fresh...

supervised learning
Classification
[Jalalzai et al.,2018]
[Clémençon et al.,2023]

Regression
[Huet et al.,2024]
[Buritica and Engelke,2024]

functional data analysis
functional PCA
[Kokoszka and Xiong,2018], [Kokoszka and Kulik,2023]
[Kim and Kokoszka,2024],[Huet et al.,2024]

miscellanea

Dimension reduction
[Goix et al.,2016]
[Cooley and Thibaud,2019]
[Drees and Sabourin,2021]

Anomaly detection
[Goix et al.,2017]
[Chiapino et al.,2020]

Clustering
[Janßen and Wan,2020]
[Vignotto et al.,2021]

Quantile regression
[Velthoen et al.,2023]
[Gnecco et al.,2023]

Cross validation
[Aghbalou et al.,2022]

Graphical models
[Engelke and Hitz,2020]

concentration [Boucheron and Thomas,2012][Goix et al.,2015]
[Lhaut and Segers,2021][Lhaut et al.,2022]
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Regression for extremes

joint work with Stephan Clémençon and Anne Sabourin
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Goal and Motivation

Goal. for (X , Y ) ∈ Rd × [−M, M] input/output random pair,
find f s.t. f (X ) ≈ Y given that ∥X∥ is large

Risk decomposition:

R(f ) = P(∥X∥ ≤ t)E
[
(Y − f (X ))2 | ∥X∥ ≤ t

]
+

P(∥X∥ ≥ t)

︸ ︷︷ ︸
≪1, if t≫1

E
[
(Y − f (X ))2 | ∥X∥ ≥ t

]

⇒ Extremes are negligible in standard Empirical Risk Minimization
⇒ focus on the minimization of the Conditional Risk

Rt(f ) := E
[
(Y − f (X ))2 | ∥X∥ ≥ t

]
.
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Beyond observed data

minimizer of Rt depends on t

⇒ no performance guarantees in more distant regions (for t ′ > t).

⇒ focus on the minimization of the Asymptotic Risk

R∞(f ) := lim sup
t→+∞

Rt(f ) = lim sup
t→+∞

E[(Y − f (X ))2 | ∥X∥ ≥ t].

Regular variation w.r.t. some component



9/26

Beyond observed data

minimizer of Rt depends on t

⇒ no performance guarantees in more distant regions (for t ′ > t).

⇒ focus on the minimization of the Asymptotic Risk

R∞(f ) := lim sup
t→+∞

Rt(f ) = lim sup
t→+∞

E[(Y − f (X ))2 | ∥X∥ ≥ t].

Regular variation w.r.t. some component



9/26

Beyond observed data

minimizer of Rt depends on t

⇒ no performance guarantees in more distant regions (for t ′ > t).

⇒ focus on the minimization of the Asymptotic Risk

R∞(f ) := lim sup
t→+∞

Rt(f ) = lim sup
t→+∞

E[(Y − f (X ))2 | ∥X∥ ≥ t].

Regular variation w.r.t. some component



10/26

Regular Variation w.r.t. some component
Appropriate regularity/stability condition?

Reminder: X ∈ RV (Rd) if limt→+∞ b(t)P(X/t ∈ ·) = µ.

Regular Variation w.r.t. the covariates.

lim
t→+∞

b(t)P
(
X/t ∈ A, Y ∈ C) = µ(A × C),

for all C ∈ B([−M, M]) and A ∈ B(Rd ) bounded away from zero s.t. µ(∂(A ×
C)) = 0.

◦ adaption of the classic assumption to measure the extremality
according to some component (here the input variable).
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Important example
Predicting a missing component in a regularly varying vector

Let Z = (Z1, ..., Zd+1) ∈ RV (Rd+1). Under classic extreme-
value assumptions on the density of Z , the pair (X , Y ), defined
as

X = (Z1, ..., Zd) and Y = Zd+1/∥Z∥p,

meets our assumptions.

⇒ our framework is well-suited for predicting Zd+1 based on
Z1, ..., Zd given that ∥(Z1, ..., Zd)∥p is large

NB back to original scale through

Y = Zd+1
∥Z∥p

⇐⇒ Zd+1 = Y ∥X∥p
(1 − |Y |p)1/p .



11/26

Important example
Predicting a missing component in a regularly varying vector

Let Z = (Z1, ..., Zd+1) ∈ RV (Rd+1). Under classic extreme-
value assumptions on the density of Z , the pair (X , Y ), defined
as

X = (Z1, ..., Zd) and Y = Zd+1/∥Z∥p,

meets our assumptions.

⇒ our framework is well-suited for predicting Zd+1 based on
Z1, ..., Zd given that ∥(Z1, ..., Zd)∥p is large

NB back to original scale through

Y = Zd+1
∥Z∥p

⇐⇒ Zd+1 = Y ∥X∥p
(1 − |Y |p)1/p .



12/26

Consequences
of regular variation w.r.t. X

◦ Existence of (R∞, Θ∞, Y∞) s.t.

L (t−1X , Y | ∥X∥ ≥ t) −→
t→+∞

L (R∞.Θ∞, Y∞)

with R∞ ⊥⊥ Θ∞, Y∞

⇝ Θ∞ conveys all the information in X∞ = R∞.Θ∞ to predict
Y∞, i.e.

f ∗
∞(X∞) = E[Y∞ | X∞] = E[Y∞ | Θ∞]

Propagation of this property to finite-distance extreme
regions?
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Propagation of the angular property

Notation: θ(x) = x/∥x∥ and Θ = X/∥X∥.

Proposition(angular minimizer at finite-distance).
With existence of densities and regularity conditions:

Convergence of minima: inff Rt(f ) −→
t→+∞

inff R∞(f ).

Angular minimizer: inff R∞(f ) = R∞(f ∗
∞),

with f ∗
∞(x) = f ∗

∞(θ(x)).

Consequence: infh Rt(h ◦ θ) −→
t→+∞

inff R∞(f ).

⇒ suggests replacing the former minimization problem with

min
h

Rt(h ◦ θ).

Benefits: extrapolation property + dimension reduction
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ROXANE algorithm
to handle regression in extreme regions

Input sample
{

(X1, Y1), ..., (Xn, Yn)
}

of input/output pairs; a
class of angular regression functions H ; number k ≤ n of extreme
observations.

Truncation keep the k ’largest’ observations{
(X(1), Y(1)), ..., (X(k), Y(k)))

}
.

Extreme ERM solve the minimization problem

min
h∈H

1
k

k∑
i=1

(
Y(i) − h(θ(X(i)))

)2
.

Output angular prediction function ĥ ◦ θ for new examples such
that ∥X∥ ≥ ∥X(k)∥.
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Statistical Guarantees
Empirical Risk Minimization

Ordered sample:
{

(X(1), Y(1)), ..., (X(n), Y(n))
}

such that
∥X(1)∥ ≥ ∥X(2)∥ ≥ ....
⇝ Empirical Conditional Risk associated with the k largest obs.

R̂n,k(h ◦ θ) := 1
k

n∑
i=1

(
Yi − h(θ(Xi))

)2
1{∥Xi∥ ≥ ∥X(k)∥}

= 1
k

k∑
i=1

(
Y(i) − h(θ(X(i)))

)2
.

⇝ ĥθ,k solution of minh∈H R̂n,k(h ◦ θ) over a class H

NB ∥X(k)∥ is the empirical version of the quantile tn,k s.t.

P(∥X∥ ≥ tn,k) = k/n.
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Risk decomposition
what can we expect?

R∞(ĥθ,k ◦ θ) − inf
f

R∞(f ) ≤ ( inf
h∈H

Rtn,k (h ◦ θ) − inf
f

Rtn,k (f ))

︸ ︷︷ ︸
model bias

+ 2 sup
h∈H

|Rtn,k (h ◦ θ) − R∞(h ◦ θ)|

︸ ︷︷ ︸
extreme bias 1

+ (inf
f

Rtn,k (f ) − inf
f

R∞(f ))

︸ ︷︷ ︸
extreme bias 2: −→

n,k→+∞
0

+ 2 sup
h∈H

|R̂n,k(h ◦ θ) − Rtn,k (h ◦ θ)|

︸ ︷︷ ︸
stochastic error
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Uniform Statistical Guarantees
a concentration bound + a negligible bias

Assumption(VC-class): H ⊂ C 0(S,R) with VC-dimension
VH < +∞, uniformly bounded

Theorem(Statistical Guarantees).
Control of stochastic error: With large probability:

sup
h∈H

∣∣∣R̂n,k(h ◦ θ) − Rtn,k (h ◦ θ)
∣∣∣ ≤ C/

√
k + O(1/k).

Control of extreme bias 1: Under a mild additional assumption,
we have:

sup
h∈H

∣∣∣Rtn,k (h ◦ θ) − R∞(h ◦ θ)
∣∣∣ −→

n,k→+∞
0.

Tools: VC-bound + Bernstein’s type inequality.
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An application to the prediction of extreme
sea levels

joint work with Philippe Naveau and Anne Sabourin
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Prediction of extreme sea levels
sea levels data (SHOM)

Goal: predict sea levels Y at
some output tide gauges (•)
given extreme sea levels X =
(XB, XN) measured at nearby
input stations (•).

Output station: Port-Tudy (10/08/1966 - 31/12/2023)
Extreme observations: (XB, XN , Y ) given that

{
XB ≥ tB or

XN ≥ tN
}

with tB, tN large thresholds

comparison of ROXANE to a parametric method
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Marginal modeling
common to both procedures

Margins are modeled by an Extended Generalized Pareto
distribution with cdf

Fσ,ξ,κ(x) =
(

1 −
(
1 + ξx

σ

)−1/ξ
)κ

◦ Generalized Pareto behavior in the right-tail;
◦ κ parameter controls the lower-tail behavior.
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Threshold Selection

EGPD behaves as GPD in the right-tail

+ GP density strictly convex for ξ > −1/2

⇝ selected threshold t lowest points above which the fitted
densities are convex, i.e. largest zeros of d3Fσ,ξ,κ(x)/dx3.
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Visual validity
EGPD vs GPD

◦ Fit of a GP distribution above the selected threshold

GP density EGP density
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Multivariate procedures
nonparametric vs parametric

ROXANE procedure:
1. Pareto marginal transformation (to satisfy regular variation

condition);
2. "angular" transformation as in the "Important example" (to fit

our framework);
3. predictions via predictive function estimated by OLS or RF.

Multivariate Generalized Pareto (MGP) modeling:
1. procedure in [Kiriliouk et al., 2019] to deduce a well-fitted

density;
2. conditional sampling given the values at the input stations;
3. predictions via Monte-Carlo average of the conditionally

generated values.
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QQ-plots of the true values vs the estimated ones

◦ ROXANE OLS (Upper-left)

◦ ROXANE RF (Bottom-left)

◦ MGP (Bottom-right)
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Time series prediction
of extreme skew surges for 1978, 1979, and 1989

MGP
bootstrap c.i.

ROX OLS

true values
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Model Errors
Mean Absolute Error/Root Mean Square Error

MGP
ROX OLS
ROX RF
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Perspectives

Regression for extremes
◦ relaxation of assumptions (in particular the regular variation);
◦ statistical guarantees for the empirical marginal

standardization in the ROXANE algorithm.

Modeling and Reconstruction of Extreme Sea Levels
◦ adjust the model by including meteorological variables;
◦ analysis of our method for improving inference on long return

periods.
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Thank you for your attention!


